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Abstract

The description of strongly correlated electron systems is of great interest within the field
of solid state physics. One of the most successful approaches is mapping the full problem
onto the Hubbard model, and treating it within dynamical mean field theory. Here
the lattice model—with nearest neighbor hopping and screened, short-range Coulomb
potential—is mapped onto a single-site quantum impurity problem and subsequently
iterated in a self-consistency loop until convergence is reached. On the one hand it can
be tackled by a computationally expensive impurity solver. In the scope of this work,
w2dynamics is used elaborating a continuous time quantum Monte Carlo integration.

On the other hand it can be tackled by a simplification of the Hubbard model such
as is represented by the Falicov-Kimball model in the sense that one spin gets frozen. It
allows for a short-cut in the self-consistency loop since the impurity problem becomes
trivial to solve. It naturally changes the physics described by the system fundamentally.
However the connection to the Hubbard model is not well understood. Investigating
the transition of the Hubbard model to the Falicov-Kimball model is of great interest as
one can easily imagine the case of spin-dependent mobility in a real system, such as half
metals. Experimentally it can be simulated by loading ultra-cold fermions of different
masses in an optical lattice as current research in the group around T. Esslinger shows.
In the scope of this thesis the phase space spanned by the Hubbard model on one side
and the Falicov-Kimball model on the other, known as mass-imbalance, is analyzed
focusing on the Mott transition on the Bethe lattice in infinite dimensions. It is a
paramagnetic metal insulator transition at low temperatures driven by the interaction
strength featuring a first order transition with coexistence region in case of the Hubbard
model and a crossover in case of the Falicov-Kimball model.

In Chapter 1 the basic theoretical understanding of strongly correlated electron sys-
tems and its limits is established. It further introduces the Hubbard model, the Falicov-
Kimball model as well as the Anderson impurity problem. Subsequently the properties
of the Bethe lattice and the Mott transition are discussed.

Chapter 2 firstly describes the code used to solve the Falicov-Kimball model and
secondly the code added to the preexisting w2dynamics in order to slowly freeze one
spin.

In Chapter 3 we engage in a discussion on the results. One particle quantities are
presented with a special focus on the imaginary part of the self-energy in Matsubara
frequencies, the occupancy of a site as well as the spectral function.

Chapter 4 reviews the presented work giving an overview and outlook to what we
presently do or do not understand about the transition of the Hubbard model to the
Falicov-Kimbal model at half filling on the Bethe lattice in infinite dimensions.
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1 Introduction

1.1 Strongly correlated systems

−t

U

Figure 1.1: Hubbard model: At each lattice
site one considers Coulomb re-
pulsion U between two electrons.
Electrons move according to the
hopping amplitude −t in corre-
spondents to the kinetic energy.

In the quantum theory of many-body sys-
tems ”many” refers to something of the
order of 1023 particles. Since the three-
body problem is already insolvable it is ap-
parent that good strategies are needed to
describe these systems. In thermodynam-
ics, statistical methods are used to arrive
at a description based on macroscopic ob-
servables, which has to be consistent with
microscopic physical laws. (?)

An approach to describe a system of
many particles from a microscopical point
of view is by means of a lattice model.
The Hubbard model is a lattice model
with nearest-neighbor (NN) hopping and
Coulomb interaction, which manifests it-
self as the Pauli exclusion principle and the Hubbard U, on each lattice site. This is
expressed by the Hubbard Hamiltonian:

HHub = −t
∑
<i,j>

∑
σ=↑,↓

[
ĉ†iσ ĉjσ + ĉ†jσ ĉiσ

]
+U

∑
i

(
ĉ†i↑ĉ

†
i↓ĉi↓ĉi↑

)
− µ

∑
i

∑
σ=↑,↓

(
ĉ†iσ ĉiσ

)
, (1.1)

where µ is the chemical potential and ĉ†iσ and ĉiσ are the creation and annihilation field
operators for the spin σ on the lattice site i. The first term is called hopping term as it
expresses the kinetic energy of the electrons and thus their mobility by the NN hopping
amplitude −t. The summation is over NN sites < i, j > and spins σ. The second term
is referred to as Coulomb interaction term. It describes the energy U the system has to
pay, if two electrons occupy the same site. (?)

In Fig. ?? we see an example of a lattice, where spin up and spin down electrons
(shown as arrows pointing upwards and downwards) are moving on a two-dimensional
square lattice.

Even though in this model only NN interaction is considered, we are still left with a
complex system to solve. The Hubbard U dependency of the Hamiltonian HHub causes
the operator not to be diagonal in momentum space. If the Coulomb interaction term
is neglected, the limit of free electron gas is described. In the model of free electron

1



1 Introduction

gas the system is reduced to an effective one-body problem by looking at one electron
and averaging over the rest of the system. This problem can in principle be solved with
the appropriate boundary conditions as known from basic quantum theory. However
neglecting the Coulomb interaction term only holds as long as the strength of the effective
particle-particle interaction within the system is well below the kinetic energy, which
manifests itself as the hopping amplitude −t. Strong electron correlation is predominant
in systems with partially filled 3d or 4f orbitals due to relatively strong localization of
the radial wave function. In these strongly correlated systems the propagation of an
electron cannot be approximated by neglecting the Coulomb interaction term and thus
the model of a free electron gas is not applicable. (?)

U

V

G0

Figure 1.2: Impurity model: On the impu-
rity site the Coulomb interaction
between two electrons is consid-
ered. The impurity interacts
with the external bath—formed
by averaging over the rest of
the system—via the hybridiza-
tion V .

Furthermore the hopping amplitude −t
dependency of the Hamiltonian HHub

causes the operator not to be diagonal in
real coordinate space either.

The description of strongly correlated
electron systems thus requires approxi-
mate techniques such as the dynamical
mean field theory (DMFT). DMFT tackles
the problem by mapping a lattice model
onto a single-site quantum impurity prob-
lem in a self-consistent manner. It takes
local quantum fluctuations (e.g. tempo-
ral fluctuations between possible quantum
states) fully into account and freezes spa-
tial fluctuations. (?)

The single-site Anderson impurity model
(AIM) describes an impurity site, on
which the Coulomb interaction is consid-
ered, hybridizing with an external bath of
non-interacting fermions. It is described
by the Hamiltonian

HAIM =
∑
l,σ

[
Vl,σ â

†
lσ ĉσ + V ∗l,σ ĉ

†
σâlσ

]
+U

(
ĉ†↑ĉ
†
↓ĉ↓ĉ↑

)
+
∑
l,σ

εlâ
†
lσâlσ−µ

(
ĉ†↑ĉ↑ + ĉ†↓ĉ↓

)
(1.2)

where ĉ†σ and ĉσ are the creation and annihilation field operators for the spin σ =↑, ↓
on the impurity site, â†lσ and âlσ are the creation and annihilation field operators for
the spin σ of a bath electron, εl is the effective energy of a bath electron and Vl is the
hybridization strength. (?)

In Fig. ?? we see a scheme of an impurity site embedded in an effective medium. The
impurity is connected with the external bath via the hybridization V . These dynamics
can be described using Green’s functions. The bare Green’s function G0(τ − τ ′) is a
propagator referring to the effective amplitude for an electron to be created on the
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1 Introduction

impurity site at time τ—coming from the external bath— and to be annihilated at time
τ ′—going back to the external bath—, when no interaction U is present on the impurity.

U
2

E[µ]

0

−1

|〉 |↑↓〉

|↑〉 |↓〉

Figure 1.3: Eigenenergies of the four possi-
ble states of occupation of the
impurity site at half filling in the
limit T → 0

1.1.1 Atomic limit

In order to gain a better understanding of
the AIM it is instructive to look at the
atomic limit, where the hybridization Vl,σ
equals zero. It enables the separation of
the Hamiltonian HAIM in Eq. (??) into
a local part, describing the impurity site,
and a bath Hamiltonian,

Vl,σ = 0 : HAIM = Himp
AIM +Hbath

AIM. (1.3)

Therefore we obtain the local Hamiltonian

Himp
AIM = U(ĉ†↑ĉ

†
↓ĉ↓ĉ↑)− µ

(
ĉ†↑ĉ↑ + ĉ†↓ĉ↓

)
. (1.4)

The Hamiltonian
(
Himp

AIM

){|s〉}
is diagonal in the basis

{|s〉} = {|〉, |↑〉, |↓〉, |↑↓〉} (1.5)

spanned by the four possible states of occupation of the impurity site. Solving for the
eigenenergies yields

E{|s〉} = {0,−µ,−µ, U − 2µ}. (1.6)

Half filling refers to the case µ = U/2 and thus at the limit temperature T → 0 the
system’s ground state has densities n↑ = n↓ = 0.5 as shown in Fig. ??.

1.1.2 Validity of
the DMFT approximation

Figure 1.4: Newton’s cradle as an example
of non-local correlation in a two-
dimensional system

DMFT implies correlations to be local.
This assumption may be presumptuous
considering Newton’s cradle. The force of
one ball being lifted and released is trans-
mitted to the other end having clearly a
non local effect in this two-dimensional
system. However in the limit of large spa-
tial dimensions d → ∞ DMFT is exact.
(?) In the case d = 3 DMFT still gives
meaningful results. However, it fails in
systems with strong non-local correlation,
such as lower-dimensional lattices and systems close to a second-order phase transition.
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1 Introduction

1.1.3 Propagation

a
(x′, t′)

b

c (x, t)

d

e

Figure 1.5: Visualization of the one particle
Green’s function.

The dynamics of a system of many parti-
cles are described by many-body propaga-
tors. The one-particle propagator is of the
form,

K(x, t;x′, t′) = 〈x, t|x′, t′〉, (1.7)

of a transmission amplitude of a particle
or excitation between the points (x′, t′)
and (x, t). In order to extract information
about the system, we look at two process:
On the one hand adding one extra parti-
cle to the system, letting it propagate from
(x′, t′) to (x, t) and then taking it away and on the other hand extracting one particle—
creating a hole—, letting the hole propagate from (x′, t′) to (x, t) and then take it away
by inserting a particle. Both processes are described by the one-particle causal Green’s
function,

G(x, t;x′, t′) = −i〈Ψ̂σ(x, t)Ψ̂†σ′(x
′, t′)〉Θ(t− t′)∓ i〈Ψ̂†σ′(x

′, t′)Ψ̂σ(x, t)〉Θ(t′ − t) (1.8)

≡ 〈T̂ Ψ̂σ(x, t)Ψ̂†σ(x′, t′)〉, (1.9)

where Ψ̂†σ(x′, t′) and Ψ̂σ(x, t) are the creation and annihilation operators for spin σ
at the points (x′, t′) and (x, t), Θ(t − t′) is the Heaviside function and T̂ is the time
ordering operator. Therefore in Schrödinger’s picture for t′ > t and a time independent
Hamiltonian H of the system one obtains

G(x, t;x′, t′) = −i 〈eiHt︸︷︷︸
e

Ψ̂σ(x)︸ ︷︷ ︸
d

e−iHteiHt′︸ ︷︷ ︸
c

Ψ̂†σ(x′)︸ ︷︷ ︸
b

e−iHt′〉︸ ︷︷ ︸
a

, (1.10)

where the terms a - e resemble a: ”e−iHt′〉”= |Ψ(t′)〉 the initial ensemble state at time
t′, b: adding a particle at (x′, t′), c: e−iHteiHt′ = eiH(t′−t) propagation from time t′ to t,
d: removing a particle at (x, t), e: the final ensemble state at time t as shown in Fig.??.
Furthermore 〈...〉 is for finite temperature T given by

〈...〉 =
1

Tr{e−βH}
Tr{e−βH...} ∀T > 0, (1.11)

where the inverse temperature β = 1
kBT

and kB is Boltzmann’s constant. It is often
helpful to perform Wick’s rotation by the continuation to imaginary time t = −iτ and
with the convention

G(x, τ ;x′, τ ′) = −iG(x, t = −iτ ;x′, t′ = −iτ ′), (1.12)

yields

G(x, τ ;x′, τ ′) = − 1

Tr{e−βH}
Tr{e−H(β−τ)Ψ̂σ(x)e−H(τ ′−τ)Ψ̂†σ(x′)e−Hτ)}. (1.13)
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1 Introduction

Due to space and time translation invariance one may perform the transformation
G(x, τ ;x′, τ ′) → G(x − x′, τ − τ ′), where the amount of arguments is reduced. 1 The
cyclic property for fermions

G(x, τ − β) = −G(x, τ) (1.14)

finally leads to the Green’s function in Matsubara frequencies

G(x, τ) =
1

β

∑
n

G(x, iωn)e−iωnτ , (1.15)

G(x, iωn) =

β∫
0

dτ G(x, τ)eiωnτ , (1.16)

where the fermionic Matsubara frequencies are given by

ωn =
π

β
(2n+ 1). (1.17)

These Green’s functions represent dressed propagators, which account for all the in-
teraction one particle has with the system during propagation. The dressed Green’s
function G0 can be put into a relation with the bare Green’s function G—propagation
without interaction of the particle with the system—and the self-energy Σ—representing
the effect of the interaction of the particle with the system on the propagation—by the
Dyson equation.

G = G0 +G0ΣG (1.18)

The dressed propagator can be diagrammatically written as an infinite sum of all possible
interactions: As a final remark one arrives from the Heisenberg equation of motion for
independent particles,

[
d

dτ
+H(x)]G0(x, τ) = −δ(τ)δ(x), (1.19)

through Fourier transformation at an expression for the bare Green’s function,

G0(k, iωn) =
1

iωn − εk + µ
. (1.20)

With the argument that there exists a one-to-one relation between energy levels of
the interacting and the non-interacting system one finds a similar expression for the
interacting lattice Green’s function

G(k, iωn) =
1

iωn − εk + µ− Σ(iωn)
, (1.21)

which is consistent with Dyson’s equation. (?)

1We shall change notation slightly, so that τ now denotes the difference in imaginary time previously
denoted by τ − τ ′ and similarly x− x′ → x.
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1 Introduction

1.1.4 Self-consistency loop

The introduced formalism is used to describe the dynamics of a system described by
the Hubbard Hamiltonian in Eq. (??). In practice, mapping the Hubbard model onto
an AIM means to determine the mean field bare Green’s function self-consistently by
iterating the loop shown in Fig. ??. The loop is entered through guessing an initial
Green’s function Gloc

(iωn) e.g. by setting the self-energy Σ(iωn) = 0. The bare Green’s
function is passed on to the impurity solver, which can be realized by a Quantum Monte
Carlo method (CT-QMC), iterative perturbation theory (IPT) and in certain cases by
analytic calculations, as well as other methods. (?) For a deeper understanding A.
Georges et al. (?) provides an excellent introduction to DMFT of strongly correlated
fermion systems and the limit of infinite dimensions.

−t

U U

V

G0

Gloc(iωn) =
∑
k

Glat(k, iωn)
G0(iωn)

−1
= Gloc(iωn)

−1
+ Σ(iωn)

Glat(iωn) = 1
iωn−H(k)+µ−Σ(iωn) Σ(iωn) = G0(iωn)

−1 −Gimp(iωn)
−1

Figure 1.6: Self-consistency loop

1.1.5 Falicov-Kimball model

One of the lattice models which has an analytic solution of the impurity model is repre-
sented by the Falicov-Kimball (FK) model. It can be seen as an ”amputated” Hubbard
model, since it is obtained by freezing the spin up electrons of the Hubbard model. This
is displayed by the Hamiltonian

HFK = −t
∑
<i,j>

[
ĉ†i ĉj + ĉ†j ĉi

]
+ U

∑
i

(
ĉ†i ĉif̂

†
i f̂i

)
+ εf

∑
i

(
f̂ †i f̂i

)
− µ

∑
i

(
ĉ†i ĉi + f̂ †i f̂i

)
,

(1.22)
where ĉ†i and ĉi are the creation and annihilation field operators of the conducting spin

down electrons and f̂ †i and f̂i are the creation and annihilation field operators of the
frozen or fixed spin up electrons on the lattice site i. εf is the on-site energy of the
fixed electrons, while an on-site energy of the conducting electrons is absorbed by the
chemical potential µ. Mapping the FK model onto an AIM is done by substituting the
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Hamiltonian in Eq. (??) by a resonant level model (RLM), yielding

Himp
FK =

∑
l

[
(εl − µ) ĉ†l ĉl − tl ĉ

†
l ĉ− t

∗
l ĉ
†ĉl

]
+ U

(
ĉ†ĉf̂ †f̂

)
+ εf

(
f̂ †f̂
)
− µ

(
ĉ†ĉ+ f̂ †f̂

)
,

(1.23)
where l labels the bath-states, εl is the corresponding bath-energy level and tl (and t∗l
respectively) is the hybridization between the impurity site and the bath-state l. The
first term mimics the rest of the lattice. It corresponds to the interaction of the electron
on the impurity site with the external bath, while the second term is the Coulomb term,
the third term corresponds to the on-site energy of a fixed electron, and the last term
corresponds to the chemical potential µ acting only on the impurity site. The RLM
impurity site Green’s function Gimp

RLM(τ) in imaginary time τ is defined as

Gimp
RLM(τ) ≡ 〈ĉ(τ)ĉ†(0)Θ(τ)− ĉ†(0)ĉ(τ)Θ(−τ)〉. (1.24)

After some calculations one arrives at the RLM impurity site Green’s function in Mat-
subara frequencies,

iωnG
imp
RLM(iωn) =

∑
l

t∗l tl
iωn − εl + µ

Gimp
RLM(iωn) + U(0 ∨ 1) Gimp

RLM(iωn)− µ Gimp
RLM(iωn) + 1,

(1.25)
where U(0 ∨ 1) denotes that U is present in the case of a fixed electron occupying the
impurity site and zero otherwise. Eq. (??) allows the definition of the hybridization
function ∆(iωn),

∆(iωn) ≡
∑
l

t∗l tl
iωn − εl + µ

, (1.26)

yielding

Gimp
RLM(iωn) =

1

iωn −∆(iωn)− U(0 ∨ 1) + µ
. (1.27)

If p is the average occupation of the impurity site by a fixed electron and the bare Green’s
function in Matsubara frequencies is defined as

G0(iωn) =
1

iωn −∆(iωn) + µ
(1.28)

the impurity Green’s function is given by

Gimp(iωn) =
p

G0(iωn)−1 +
(1− p)

G0(iωn)−1 − U
. (1.29)

The calculations are carefully carried out and presented in more detail in the diploma
thesis by T. Ribic in Ref. (?). For more insight on the exact DMFT of the FK model
please refer to the comprehensive paper by J. K. Freericks and V. Zlatić in Ref. (?).
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Figure 1.7: Bethe lattice (?)

1.2 Bethe lattice
The system’s underlying properties are given by its lattice and its symmetries. In Fig.
?? we see a square lattice, which is a special case of the general d dimensional hypercubic
(hc) lattice. The d dimensional hc lattice is spanned by d orthonormal primitive lattice
vectors. The shortest lattice vector defines NNs which we need to describe NN hopping
with amplitude −t. In general one may define next-nearest-neightbor hopping and so
forth, however their amplitude of hopping is assumed to decrease with increasing dis-
tance. Mapping a lattice model onto a AIM requires to find the corresponding density
of states (DOS) to the lattice type and dimension. As discussed in ?? DMFT is exact
for d → ∞ and thus the DOS for d → ∞ is of interest. However the DOS of the hc
lattice has unpleasant properties. It is Gaussian shaped and thus has an in principle
infinite bandwidth. These tails of the hc DOS motivate the introduction of a some what
unphysical pseudo lattice: The Bethe lattice.2

The Bethe lattice is a special case of the Cayley Tree where each site is surrounded
by Z NNs and where no closed loops are formed. In d = 1, i.e. Z = 2, this corresponds
to a usual, chain-like lattice. However in Z > 2 it is not a regular lattice as shown in
Fig. ?? for Z = 3. For d→∞, i.e. Z →∞, the Bethe DOS is given by

D(ε) =
2

πD

√
1−

( ε
D

)2

, (1.30)

where ε is the energy and D is the half-bandwidth—marking the sharp edges of this semi-
elliptic DOS shown in Fig. ?? on the right. The half bandwidth D of the Bethe DOS is
connected to the hopping amplitude −t of the Hubbard model by the relation D = 2t.
And respectively the half-bandwidth is directly proportional to the kinetic energy of the
system, Ekin ∝ D. In order to compare results of different DOS in a meaningful way
one defines the effective bandwidth

W = 4

√√√√√ ∞∫
−∞

dε ε2D(ε), (1.31)

2Suggested in 1935 by H. A. Bethe. (?)
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which is for the Bethe DOS given by W = 2D. The half-bandwidth is related to the
hopping term of the Hamiltonian as D = 2|t|. The symmetry of the Bethe lattice
causes the system to be separable into sub-lattices of opposite local magnetic moment—
corresponding to anti-ferromagnetic behavior—for temperatures below the critical Néel
temperature, T < TN . Interestingly the same semi-elliptic DOS is expected for an
arbitrary topology—e.g. a fully connected lattice—as long as there is randomness of the
hopping −tij, where i, j are NNs and the mean vanishes, 〈tij〉 = 0. For these lattices
one can generally not expect Néel order for any finite temperature.

One finds an analytic expression for the local Green’s function by rewriting the sum
over all momenta k of the lattice Green’s function

Gloc(iωn) =
∑
k

Glat
(k,iωn) =

∑
k

(ζn − εk)−1 (1.32)

≈
∫ D

−D
dε

N(ε)

ζn − ε
=

2ζn
D2

(
1−

√
1− D2

ζ2
n

)
, (1.33)

where ζn = iωn + µ − Σ(iωn) was defined for convenience. For more details on how to
arrive at the Bethe DOS and applications—e.g. mapping it onto a hc lattice and thus
define transport properties—refer to chapter 2 of the Ph.D thesis by N. Blümer in Ref.
(?). Furthermore to exploit on the link to the Mott transition discussed in the next
chapter refer to the paper by A. Georges et al. in Ref. (?).

1.3 Mott transition
Before one continues with reading it is important to be familiar with basic Fermi Liq-
uid Theory. Thereby key words such as the quasiparticle concept, excitation-hole pair
creation and the Kondo effect may be exploited.

With this fundament we shall discuss a qualitative picture of the Mott phase tran-
sition in the Hubbard model. Suppose at time t = −∞ there was no particle-particle
interaction and the system—described by H0—can be solved exactly. Now the interac-
tion is switched on adiabatically—described by H = H0 + λ(t)V—, so that no energy
level cross.3 There exists a one-to-one relation between energy level before and after
the adiabatic switch on. This argument has already been used in ?? and is referred to
as adiabatic concept. Because states of different symmetry can not mix due to selection
rules, it is possible that their energy level cross without loosing the one-to-one relation.
If energy level cross at a critical interaction strength λc the system changes its ground
state to a different symmetry. This process is called spontaneous symmetry breaking and
describes a phase transition.

In the Hubbard model on the Bethe lattice introduced in Section ?? 4 different
phases can be distinguished: A high-temperature paramagnetic metallic phase, a high-
temperature paramagnetic insulating phase, a low-temperature anti-ferromagnetic insu-
lating phase and magnetically frustrated anti-ferromagnetic metallic phase. However in
the scope of this work we shall ignore—or rather suppress—Néel order in order to find

3λ(t) = e−θ|t|, where θ can be arbitrarily small and 0 6 λ 6 1.
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1 Introduction

the Mott transition from a paramagnetic metallic phase to a paramagnetic insulating
phase at low temperatures. This may seem unphysical at first, however as motivated in
Section ?? this merely suggests a system on a fully connected lattice with semi-elliptic
DOS.

In Fig. 30 of Ref. ? a qualitative picture of the Mott transition from a metal to an
insulator at T = 0 is shown. The transition proceeds as follows: For the limit of no
interaction, i.e. U = 0, the DOS is unchanged a semi-elliptic shape, which is at half-
filling centred at the chemical potential and hence metallic behavior. As the interaction
is turned on the upper and the lower Hubbard bands wander off each centered at ±U

2

leaving behind only the quasiparticle peak at the Fermi surface as a display of the Kondo
effect. The height of the quasiparticle peak remains unchanged—this is called pinning—
while the width is determined by the Kondo temperature of the impurity, which is related
to the quasiparticle residue Z or Z-factor. The Z-factor is given by the low frequency
behavior of the self-energy of a local Fermi liquid:4

<{Σ(ω + i0+)} =
U

2
+ (1− 1

Z
)ω +O(ω3). (1.34)

It allows to make statements about the renormalization of the system, since it is related
to the effective mass m∗ of the quasiparticle by

1

Z
=
m∗

m
(1.35)

and to the renormalized Fermi energy by

ε∗F = ZD, (1.36)

which also defines the Kondo temperature. As the interaction U increases the quasi-
particle peak gets narrower, i.e. the quasiparticles get heavier, and finally vanish at a
critical interaction strength Uc2. As there is no weight at the Fermi surface the system
entered the insulating phase. The gap between the Hubbard bands is of the order of
U − 2D. By further increasing U the hopping becomes negligible and we approach the
atomic limit discussed in ??.

Going back from the insulating phase to the metallic phase implies decreasing U.
Coming now from the atomic limit no quasiparticle peak appears until the Hubbard
bands meet at the chemical potential and the metallic phase is entered. It happens at
the critical interaction strength Uc1. Generally the critical interaction strength Uc1 is
not equal to Uc2, Uc1 6= Uc2. Clearly it is a first order phase transition with a jump in
the double occupancy of the impurity as the quasiparticle peak abruptly vanishes. The
coexistence region refers to the values Uc1 ≤ U ≤ Uc2, where the system has a metallic
as well as an insulating solution.

For finite temperatures one finds a phase diagram in which for T < Tc exists a first
order phase transition with coexistence region and for T > Tc exists a not sharply

4The statement is about the self-energy in real frequencies.
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outlined cross over region. The cross over from the metallic to the insulating phase
proceeds by a continuous decrease of the double occupancy.

In order to find more explanations on the adiabatic concept, phase transitions, the
Landau Fermi liquid theory or local moments as well as the Kondo effect the soon to be
published Introduction to Many Body Physics by P. Coleman in Ref. ? is recommended.
Furthermore the connection to the Mott transition of the Hubbard model with a Bethe
DOS is again nicely described in the paper by A. Georges et al. in Ref. (?).

11



2 Computer programs

This chapter describes two programs, which can solve a self consistent loop as displayed
in Fig. ??. Firstly bethe-phasediagram-14-04-15.py which can solve the mapping of the
lattice model onto the impurity model in FK model. And secondly the pre-existing
w2dynamics, which has been slightly modified in order to investigate the behavior of the
Mott transition of the Hubbard model towards the FK model.

2.1 Falicov-Kimball
In order to look at the Mott-like transition of the FK model one can follow the self-
consistent loop in Fig. ??. The loop is entered by setting up all fermionic Matsub-
ara frequencies using Eq. (??), starting from a non-interacting solution by setting the
self-energy in Matsubara frequencies (siw) equal zero and using the analytic result
for the local Green’s function in Matsubara frequencies on the Bethe lattice found
in Eq. (??) by approximating the sum over all momenta (first gloc by the function
Green local analytically). This gives rise to the first hybridization function given by
rearranging Eq. (??) (fiw by the function hybridization). In this step the Dyson Eq.
has been used implicitly. As the self-energy is zero the local Green’s function is exactly
equal to the bare Green’s function. Within the loop the impurity solver is represented
by the function Green local using Eq. (??) (glocold), which is unique to the FK model.
At the same time the bare Green’s function is computed (giw). The local and the bare
Green’s function are now used to calculate the self-energy (siw) by using the Dyson
Eq. and subsequently using the self-energy to compute a new local Green’s function in
Matsubara frequencies (gloc) by applying once again the analytically solved integral in
Eq. (??). From this point one finds a new hybridization (fiw) and can repeat the loop
until self-consistency is reached, but also the local Green’s function in imaginary time
(gtau) can be computed by performing a Fourier transformation. However a little trick
is used: To take care of the asymptotic behavior 1

iωn
it is first subtracted and then added

afterwards,

G(τ) = F
(
Gimp(iωn)

−1 − 1

iωn

)
− 1

2
. (2.1)

This loop is the basis of the Python script bethe-phasediagram-14-04-15.py, which can
be found in Appendix ??. In the first two sections—separated by ###...#—the half-
bandwidth D, inverse temperature β, the number of iteration steps (DMFTsteps), some
file name prefix for the output, the number of discrete Matsubara frequencies and imag-
inary time coordinates (Niw and Ntau), the values of interaction strength (U) and the
average occupation probability (p) are set. In the third section libraries are imported
and functions are defined to subsequently perform the described loop for all U values.

12



2 Computer programs

siw=dyson siw

glocold=Green local
giw=Green bare

fiw=hybridization

gloc=Green local analytically

gtau=FT

w
siw= 0
Green local analytically
fiw=hybridization

Figure 2.1: The self consistent loop used in bethe-phasediagram-14-04-15.py to investi-
gate the Mott-like transition of FK model. A summary of the used functions
is presented in Table ??.

w ωn = π
β

(2n+ 1)

Green local analytically Gloc(iωn) = 2ζn
D2

(
1−

√
1− D2

ζ2n

)
,

where ζn = iωn + µ− Σ(iωn)

gfw2g0w G0(iωn)
−1

= Gloc(iωn)
−1

+ Σ(iωn)

fiw=hybridization ∆(iωn) = iωn + µ−G0(iωn)
−1

glocold = Green local Gimp(iω) = p

G0(iωn)−1 + (1−p)
G0(iωn)−1−U

giw=Green bare G0(iωn) = 1
iωn−∆(iωn)+µ

gtau=FT G(τ) = F
(
Gimp(iωn)

−1 − 1
iωn

)
− 1

2

dyson siw Σ(iωn) = G0(iωn)
−1 −Gimp(iω)

−1

Table 2.1: A summary of the functions used to perform the self consistent loop of bethe-
phasediagram-14-04-15.py displayed in Fig. ??.
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2 Computer programs

And furthermore the local Green’s function of the impurity, the self-energy, local Green’s
function of the lattice and the hybridization in Matsubara frequencies, as well as the
local Green’s function in imaginary time are stored. In the final section a small overview
is send to the terminal, the local Green’s function in imaginary time and the self energy
in Matsubara frequencies are stored in txt files labelled by the according U value and all
stored functions may be plotted. The same loop has been used and published by Ling
Chen, B. A. Jones and J. K. Freericks—Ref. ?.

14



2 Computer programs

2.2 w2dynamics
The w2dynamics program performs a self consistent loop as shown in Fig. ?? for the
Hubbard model. The impurity solver is realized by a continuous time quantum Monte
Carlo (CT-QMC) method and one of its classes—BetheLattice—enables calculations on
the Bethe lattice for arbitrary half-bandwidth. In the scope of this work some adjust-
ments have been made: The class FKBetheLattice was added. Its code can be found in
Appendix ??. The class is an extension to the class BetheLattice and allows to choose
different half-bandwidths for each spin and hence to simulate the limit between the
Hubbard model—with two equally mobile spins—and the FK model—with one frozen
spin.1

The following steps implement the new class in an older version of the code:

• \w2dynamics\auxiliaries\configspec :
old:
DOS =

option(’flat’,’semicirc’,’ReadIn’,’ReadInSO’,’Bethe’,’Bethe in tau’,

’EDcheck’,’nano’,’CoulvsKan’,’readDelta’ ,default=’Bethe’)

new:
DOS =

option(’flat’,’semicirc’,’ReadIn’,’ReadInSO’,’Bethe’,’FKBethe’,

’Bethe in tau’,’EDcheck’,’nano’,’CoulvsKan’,’readDelta’ ,default=’Bethe’)

• \w2dynamics\auxiliaries\lattices.py :
Insert the class FKBetheLattice in Appendix ??.
And add
’FKBethe’: FKBetheLattice

to str2lat at the end.

• Do not forget performing ./install.sh

As a final remark an important step shall be pointed out: On the Bethe lattice the
Mott transition as shadowed by an antiferromagnetic dome. In order to suppress this
behavior the hybridization in imaginary time (ftau) is symmetrised at β

2
. This forces

the local Green’s function in imaginary time to stay symmetric around β
2

and thus both
spins stay degenerate. For a better understanding of these physical arguments refer to
Section ??.

1Winter is coming.
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3 Results

In this chapter the observables, i.e. the quantities connected to the self-energy in Mat-
subara frequencies and to the local Green’s function in imaginary time as well as the
occupancy, shall be introduced in a qualitative manner. It will enable us to subsequently
interpret the results produced by the programs described in chapter ??.

3.1 Properties of observables

3.1.1 Self energy in Matsubara frequencies

The self-energy is used as an indicator of local Fermi liquid behavior. On the Matsubara
frequency-axis the low-frequency behavior of the imaginary part of the self-energy is
given by

=Σ(iωn) = −iγ − iαωn +O(ω2
n), (3.1)

where the off set γ is due to the imaginary part of the self-energy on the real frequency
axis, which is related to the life-time of a quasi particle. The linear contribution α
results from the real part of the self-energy on the real frequency axis and has a simple
relation to the quasi particle residue as one finds by comparison to Eq. (??),

Z = (1 + α)−1. (3.2)

The values are extracted from data by the code in Appendix ?? which uses a linear
fitting to the first two values =Σ(iω1) and =Σ(iω2).

Fig. ?? (a) shows a typical example of local Fermi liquid like behavior of a renormalized
system in the paramagnetic, metallic phase. If the Fermi liquid breaks down due to a
phase transition into the paramagnetic insulating phase, the self-energy diverges for low
frequencies—forming a pole for |ω| → 0 as shown in Fig. ?? (b).1 In both cases the
asymptotic behavior for iωn → ∞ is given by A + B

iωn
, which is consistent with the

properties of the Green’s function in Matsubara frequencies and is dictated by the value

of interaction strength, i.e. by U2n(n−1)
iωn

= U2

4 iωn
at half-filling.

Fig. ?? shows the quasi particle residue Z as a function of the interaction strength U
at different temperatures, β = 100 and β = 20. If the value of Z is approaches 0, the
imaginary part of the self-energy diverges at low Matsubara frequencies. The divergence
corresponds to the break down of the Fermi Liquid behavior—i.e. the quasi particle
concept—and hence the definition of the quasi particle residue in Eq. (??). Even though

1Strictly speaking there can only be divergence of the self-energy on the real frequency axis for |ω| → 0
since there is no fermionic Matsubara frequency at zero, |iωn| 6= 0. However one can see the
asymptotics towards this behavior.
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Figure 3.1: The imaginary part of the self-energy in Matsubara frequencies of the Hub-
bard model at inverse temperature β = 100, with half-bandwidth D = 2 on
the Bethe lattice with interaction strength (a) U = 5.2 corresponding to a
paramagnetic, metallic phase, and (b) U = 5.5 corresponding to a paramag-
netic, insulating phase.
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Figure 3.2: The Z-factor extracted from the imaginary part of the self-energy in Mat-
subara frequencies of the Hubbard model with half-bandwidth D = 2 on the
Bethe lattice as a function of the interaction strength U at the inverse tem-
perature (a) β = 100 corresponding to a Mott transition with coexistence
region for 4.75± 0.05 < U < 5.35± 0.05, and (b) β = 20 corresponding to a
cross over.
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3 Results

the definition breaks down the data point is included in the plot illustrative reasons.
Negative values of Z—as it is the case for β = 20 and U = 4.7 in Fig. ?? (b)—often
appear in a system in which the Fermi liquid theory is of limited validity. The reason for
the negative value is that at high temperatures the spacing of the Matsubara frequency
is too large to capture the linear low-frequency behavior that correspond to Fermi liquid
properties. The quasi particle concept holds, however the excitation do not have infinite
life-time and thus there is no pinning of the quasi particle peak. Far above the critical
temperature Tc the damping of the quasi particle peak can suppress it entirely. It leads
to a very similar spectral function as one finds in the FK model featuring no quasi
particle peak but the Hubbard bands. 2 Lastly, any positive finite value describes the
renormalization of the system.

2The state of art is that in the Hubbard model at high temperatures quasiparitcles exist with infinitely
short life-time, as compared to the FK model where quasiparticle excitations are believed to be
suppressed. It corresponds to the mickey mouse picture that the Kondo effect cannot take place if
one spin is frozen and thus no Kondo-peak or equivalently quasiparticle peak occures. As we will
see later, the interpretation of the FK model cannot hold.
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Figure 3.3: The local Green’s function in imaginary time of the Hubbard model at in-
verse temperature β = 100, with half-bandwidth D = 2 on the Bethe lattice
computed with 100 τ ticks with interaction strength (a) U = 5.2 correspond-
ing to a paramagnetic, metallic phase, and (b) U = 5.5 corresponding to a
paramagnetic, insulating phase.

3.1.2 Local Green’s function in imaginary time

The local Green’s function in imaginary time is the default measurement in w2dynamics
within the impurity solver. It is used to perform the analytic continuation and find the
spectral function as described in ??, but can already be valued for physical interpretation:
The values G(τ = 0) and G(τ = β) must add up to the absolute value of 1, |G(τ =
0) +G(τ = β)| = 1, and indicate the filling of the system. At half-filling this translates
to the condition

G(τ = 0) = G(τ = β) = 0.5. (3.3)

However in numerical methods it is often cut off due to binning as it is also the case in Fig.
??. The value G(τ = β/2) is an indicator for the spectral weight in a small interval, kBT ,
around the Fermi surface as one sees by comparison of the paramagnetic metallic solution
in Fig. ?? (a) to the paramagnetic insulating solution in Fig. ?? (b).3 More physical
properties can be found by plotting on a logarithmic scale as shown in Fig. ??. The partly
linear behavior on this scale is a result of the main energy level contributions. For more
details of the interpretation one has to consider the Källén-Lehmann representation, but
is best advised to refer to the Ph.D thesis by M. Wallerberger in Ref. ?.

3The sign of the function is merely convention and should not be taken too seriously.
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Figure 3.4: The local Green’s function in imaginary time of the Hubbard model at inverse
temperature β = 100, with half-bandwidth D = 2 on the Bethe lattice with
interaction strength (a) U = 5.2 corresponding to a paramagnetic, metallic
phase, and (b) U = 5.5 corresponding to a paramagnetic, insulating phase
on a logarithmic scale.

3.1.3 Occupancy

The occupancy is a real and symmetric matrix of the form 〈nσnσ′〉, where the off-
diagonal elements are called double occupancy, i.e. 〈n↑n↓〉 = 〈n↓n↑〉. In Fig. ?? the
double occupancy is shown as a function of the interaction strength going from the
metallic phase to the insulating phase and vis versa for two different temperatures,
β = 100 and β = 20. As β = 100 the Hubbard model undergoes a Mott transition. It
causes the formation of a hysteresis due to the coexistence region as shown in Fig. ??
(a). For β = 20 the system passes the cross over region, where the double occupancy is
a continuous function of the interaction strength as shown4 in Fig. ?? (b).

3.1.4 Spectral function

In order to obtain the spectral function A(ω) from imaginary time—or equivalently of
Matsubara frequencies—one needs to do an analytic continuation to real frequencies.
More precisely in the case of an analytic continuation of the local Green’s function in
imaginary time the spectral function needs to be extracted from the integral

G(τ) =

∫
dω

e−τω

1 + e−βω
A(ω), (3.4)

which is an under-determined problem if G(τ) is known on a finite support only. The
problem is tackled by the maximum entropy (MaxEnt) method.5 Since it is a stochastic

4or rather foreshadowed
5Missing ref to first Max ent paper
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Figure 3.5: The double occupancy 〈n↑n↓〉 as a function of the interaction strength U
with half-bandwidth D = 2 on the Bethe lattice in the Hubbard model at
(a) β = 100 displaying a hysteresis within the coexistence region, and (b)
β = 20 displaying a continuous cross over.

procedure there is no assurance that the computed spectral function is indeed the best
solution. The package used in the scope of this work has been implemented and described
in detail by B. Hartl in Ref. ?.

After this warning the importance of some physical aspects of the spectra shall be
stressed. Here, for a discussion of the spectral function near the Mott transition in the
Hubbard model shall be pointed to Ref. ? (Chap. VII. and in particular to Fig. 30 as
well as to Chap. ??).
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3.2 Falicov-Kimball
Fig. ?? shows results computed by the code described in Section ??. The half-bandwidth
is set equal to 2, D = 2. The local Green’s function in imaginary time clearly shows
half-filling and gives reason to belief that the system changes its phase from metallic to
insulating at U = 2, while the range of τ indicates β = 50. Indeed the imaginary part
of the self-energy divergence for values U > 2 and the system is therefore insulating.
However for values U < 2 the self-energy does not show Fermi liquid behavior either,
because the slope at low frequencies is positive, i.e. α—as defined in Eq. (??)—has the
wrong sign. This behavior can be referred to as dirty Fermi liquid, although one should
stress that the quasi particle concept is not valid for the FK model. 6 The absence
of quasi particles—and hence of the quasi particle peak—causes the phase transition
to take place when the Hubbard bands separate. The separation occurs temperature
independent and furthermore in the case of half-filling exactly at U = D as shown in
Fig. ?? .7

The spectral function A(ω) may be obtained by applying the Box-Muller transforma-
tion to the local Green’s function in imaginary time in order to get a Gaussian error
distribution and subsequently performing MaxEnt. However here shall be pointed to
FIG. 12 in Rev. ?, where J. K. Freericks, V. Zlatić are presenting the spectra for differ-
ent values of U ranging from 0.5 to 3.0 in steps of 0.5. The same units are chosen so
that in Rev. ? and in this work the transition occurs at U = 2.

6This is true for all fillings, except p = 0 or 1. p is defined in Eq. (??).
7The T independence can be shown more explicit by a mapping presented in Ref. ?. However one should

keep in mind that the temperature naturally still influences the spacing of Matsubara frequencies.
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Figure 3.6: (a) The imaginary part of the self-energy in Matsubara frequencies, and
(b) the local Green’s function in imaginary time for different values of the
interaction strength of the temperature independent Mott-like transition on
the Bethe lattice in the FK model, which occurs exactly at U = D = 2
computed at half-filling for β = 50, obtained by the code described in Section
??.
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Figure 3.7: The U -T -phase diagramm of the temperature independent Mott-like tran-
sition on the Bethe lattice in the FK model, which occurs exactly at
U = D = 2. The color coded scatter correspond to the solutions shown
in Fig. ??. For U < D the system is metallic (M) and respectively for
U > D it is insulating (I).

3.3 w2dynamics
In the standard Hubbard model both spins have equal half bandwidth, D1 = D2, and
hence without any magnetic frustration their solutions are symmetric. In the Bethe-
Lattice class of w2dynamics this fact is utilized to suppress Néel order. While in FK-
BetheLattice the suppression is achieved by symmetrising the hybridization function in
imaginary time. This is necessary as the spin symmetry is lost by spin-dependently
choosing the bandwidths. In order to demonstrate the reliability of the results the limit
of the standard Hubbard model with D1 = D2 is discussed. It has the additional ad-
vantage of subsequently being able to draw direct comparison for the transition to the
FK model. The transition is mimicked by reducing the half bandwidth of one spin D2,
while the half bandwidth of the other spin remains constant, D1 = 2. Fortunately this
seems to be the appropriate energy scale.8

3.3.1 The standard Hubbard model

Fig. ?? shows the imaginary part of the self-energy and the local Green’s function in
imaginary time of a system at half-filling with half bandwidths D1 = D2 = 2 at β = 100
for different values of the interaction strength close to the Mott transition. For U = 4.6
(blue) U = 4.9 (yellow) the solution is approached from the atomic limit, i.e. from
the insulating phase. For U = 4.6 < Uc1 (blue) we have only one thermodynamic stable
metallic solution which shows proper Fermi liquid like behavior. The case U = 4.9 > Uc1
(yellow) is insulating, i.e. the imaginary part of its self-energy divergences at ωn = 0 and
G(τ = β/2) is small. Although by approaching that point from the non interacting limit
it has a metallic solution, too. The cases U = 5.2 < Uc2 (orange) and U = 5.5 > Uc2
(red) are approached from the non interacting limit and analogously show metallic and

8One could also think of introducing a mean half bandwidth or a similar effective energy scale.
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insulating behavior.
In Fig. ?? the temperature dependency of the Mott transition is shown as a function

of interaction strength. The dominant scatter illustrates which solutions have been
considered in Fig. ?? and the pale scatter which points have been computed in order to
find Uc1(T ) and Uc2(T ) (black). Here, the ultimate goal becomes apparent: Connecting
the shape of the Mott transition in the Hubbard model on the right hand side, with the
infinite straight line on the left hand side, i.e. the Mott-like transition in the FK model,
in a meaningful way and ideally understand the meaning.

Before we tackle that problem, let us consider the behavior of the double occupancy
and the Z-factor at different temperatures in the standard Hubbard model. In Fig.
?? the hysteresis within the coexistence region of the two quantities is shown at inverse
temperatures β = 100, 50 and 31.25. For temperatures higher than a critical temperatur
Tc the solutions pass a cross over region instead of the coexistence region of the Mott
transition and the double occupancy as well as the Z-factor are continuous functions,
e.g. at β = 20.

The spectral functions shown in Fig. ?? are obtained by performing MaxEnt on the
local Green’s function in Matsubara frequencies.9 For the value of interaction strength
U = 4.6 (blue) the Hubbard bands are just at the point of separating and the pinned
quasi particle peak is developed. For U = 4.9 (yellow) the system is within the coex-
istence region. The solution is approached from the insulating phase and the Hubbard
bands are just at the point of rejoining. No quasi particle peak is developed. For
U = 5.2 (orange) the system is also within the coexistence region. However the solution
is approached from the non-interacting limit phase and although the Hubbard bands
are already separated, the system is metallic due to the pinned quasi particle peak. For
U = 5.5 (blue) the Hubbard bands are separated and the quasi particle peak vanished.
There is no weight at the chemical potential and hence the system is insulating.

9The analytic continuation is done in Matsubara frequencies—instead of imaginary time—because of
MaxEnt intrinsic malfunction in case of strong Hubbard band features. The basic problem is over
weighting of any central feature of the spectral function. It is discussed in more detail in Ref. ?.

25



3 Results

0 1 2 3 4 5
−6

−5

−4

−3

−2

−1

0

iω

=
Σ

(i
ω
n
)

U = 4.6
U = 4.9
U = 5.2
U = 5.5

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

τ

G
(τ

)

(a)

(b)

Figure 3.8: (a) The imaginary part of the self-energy in Matsubara frequencies, and
(b) the local Green’s function in imaginary time for different values of the
interaction strength U near the temperature dependent Mott transition on
the Bethe lattice in the Hubbard model computed at half-filling at β = 100
with D1 = D2 = 2 by the code described in Section ??.
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Figure 3.9: The T -U -phase diagram of the Mott transition in the Hubbard model for
D = 2. The color coded scatter correspond to the solutions shown in Fig. ??.
For U < Uc1 the system is metallic (M) and for U > Uc2 insulating (I). The
coexistence region is defined within Uc1 < U < Uc2. The pale scatter shows
which points have been computed: (blue) metallic from insulating, (yellow)
insulating from insulating, (orange) metal from metal, (red) insulating from
metal. While the pale straight line (blue) indicates the Mott-like transition
in the FK model.
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Figure 3.10: The double occupancy 〈n↑n↓〉 (on the top) and the quasi particle residue
Z (on the bottom) as a function of the interaction strength U for the tem-
perature dependent Mott transition on the Bethe lattice in the Hubbard
model computed at half-filling with D1 = D2 = 2 at (a), (e) β = 100 (b),
(f) β = 50 (c), (g) β = 31.25, and (d), (h) β = 20

.
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Figure 3.11: Spectral function A(ω) for different values of the interaction strength U
near the temperature dependent Mott transition on the Bethe lattice in the
Hubbard model computed at half-filling at β = 100 with D1 = D2 = 2 by
the code described in Section ??.

3.3.2 The mass-imbalanced Hubbard model and the transition to
the Falicov-Kimball model

The transition of the Hubbard model to the FK model is mimicked by freezing out one
spin by making the bandwidth narrower while the other spin remains mobile on the Bethe
lattice at half filling. The half-bandwidth of the itinerant spin is set to D1 = 2 which
corresponds to a normalized hopping amplitude t = 1, while the control parameters are
the inverse temperature β, the interaction strength U and the half-bandwidth of the
freezing spin D2.

In Fig. ?? and Fig. ?? (a) - (d) the imaginary part of the self-energy in Matsubara
frequencies is compared for a small step towards the FK model, i.e. the half-bandwidths
are D2 = 1.9 and 1.95; and a greater step, i.e. D2 = 1.15, at the inverse temperature
β = 50. Fig. ?? and Fig. ?? (e) - (h) display the probability distribution of the expansion
order k used by the CT-QMC solver and serve as an indicator for the kinetic energy
of each spin. The itinerant spin with D1 = 2 is shown on top and the freezing spin
with D2 on the bottom. The color code is analogous to Fig. ??, while decreasing D2 is
increasingly pale. For D2 = 1.95 and 1.9 the solutions are computed at the same values
of the interaction strength U , while for D2 = 1.15 the Mott transition is significantly
shifted and hence the values of the interaction strength are shifted respectively to display
solutions across the Mott transition. The considered solutions are highlighted in Fig. ??
(a) by black circles, although the figure is discussed later in more detail.

For the the small step in D2 the two spins behave very similar. The asymptotic
value is dictated by the interaction strength U and is hence the same for D2 = 1.95
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and 1.9. For low frequencies the function behaves ”more insulating”10 with decreasing
half-bandwidth of the freezing spin. Although the difference is small one observes that
for each value of interaction strength the effects are stronger for the itinerant spin.
The tendency towards the insulating phase can be understood as a result of the overall
decrease of kinetic energy in the system, while the heavier effect on the itinerant spin
points towards stronger renormalization for the itinerant spin.

For the bigger step to D = 1.15 the difference in behavior of the spins is more obvious.
For both spins the asymptotic behavior is shifted according to the shift in interaction
strength due to the shift of the Mott transition. In the metallic phase—in Fig. ??—the
freezing spin maintains its quasi particle residue right before the transition occurs, while
the renormalization of the itinerant spin is significantly larger.11 Convolution of the
low-frequency and the asymptotic behavior results in a shift of the minimum towards
lower frequencies. Extended to the limit of the FK model the minimum gets shifted to
iωn = 0. The quasi particle residue of the itinerant spin goes to zero, Z → 0, which may
be caused by an attempt of the system to compensate the mismatch in the kinetic energy
of the itinerant spin and the completely frozen spin. It results in a behavior as shown
in Fig. ?? (a) for the values U = 1.5 and 1.75 of the interaction strength. Lastly, the
process of freezing generally has less impact on the insulating solution, which is likely
due to less overall movement in the system. The overall tendency towards the insulating
phase is further supported by the changes of the local Green’s function in imaginary
time. However it is not discussed—neither shown—as there are no further conclusions
drawn by it.

The shift of the Mott transition is investigated by performing two cuts at constant
temperature, at β = 50 and β = 100, as shown in Fig. ??. The critical interaction
strength as a function of the half-bandwidth of the freezing spin, Uc1(D2) and Uc2(D2),
show almost linear behavior seemingly to intersect the U -axis—for D2 = 0—at U = 2.
Furthermore the coexistence region is smaller towards narrower bandwidths as empha-
sized in Fig. ??. The result is perfectly in agreement with the FK model with D2 = 0,
where the Mott-like transition takes place at U = D1 = 2 without coexistence region.

In Fig. ?? the quasi particle residue Z is shown for different bandwidths, D2 = 2,
1.6, 1.2, 0.8 and 0.4, at β = 100—on the left hand side—and β = 50—on the right
hand side—for the itinerant and the freezing spin.12 The itinerant spin with D2 gets
heavier, while the coexistence region gets narrower and is shifted towards lower interac-
tion strength. Interestingly for a constant value of D2 the height of the hysteresis curve
depends on the spin, but not its width. It suggests that even though the spins are renor-

10The absolute value of the slope as well as the minimum value of the self energy for metallic solutions
increases, while insulating solutions tend towards earlier divergence.

11 This suggests that the system always becomes insulating as soon as both spins, i.e. all electrons, get
heavier than a certain critical effective mass. Furthermore the system may aim for the same effective
kinetic energy of both spins. Therefore the already heavier spin—i.e. the freezing spin—needs less
renormalization.

12(D2,β) =(0.4,50) is excluded as it is bad data. The coexistence region is very narrow at that point
and therefore the solutions easily slip into the insulating phase within the error bars. Furthermore,
quantum Monte Carlo integration suffers from critical slowing-down in the vicinity of a critical point,
which causes results to be less reliable.
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Figure 3.12: (a) - (d) Imaginary part of the self-energy in Matsubara frequencies, (e) -
(h) Histogram of the expansion order k in the CT-QMC,
for different values of the interaction strength U in the metallic phase near
the Mott transition on the Bethe lattice in transition of the Hubbard model
to the FK model computed at half-filling at β = 50 with D1 = 2 for the
itinerant spin—(a), (b), (e) and (f)—by the code described in Section ??.
A comparison of different half bandwidths D2 of the freezing spin—(c), (d),
(g) and (h): A comparison of different spin—(c), (d), (g) and (h): Just
at the point of entering the coexistence region with (U ,D2): (4.6, 1.95) ??
(4.6, 1.9) ?? (3.6, 1.15) ?? and within the coexistence region with (4.9, 1.95)
?? (4.9, 1.9) ?? (3.8, 1.15) ??.
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Figure 3.13: (a) - (d) Imaginary part of the self-energy in Matsubara frequencies, (e) -
(h) Histogram of the expansion order k in the CT-QMC,
for different values of the interaction strength U in the insulating phase
near the Mott transition on the Bethe lattice in transition of the Hubbard
model to the FK model computed at half-filling at β = 50 with D1 = 2 for
the itinerant spin—(a), (b), (e) and (f)—by the code described in Section
??. A comparison of different half bandwidths D2 of the freezing spin—(c),
(d), (g) and (h): Within the coexistence region with (U ,D2): (4.7, 1.95) ??
(4.7, 1.9) ?? (3.7, 1.15) ??, and before entering the coexistence region with
(5.0, 1.95) ?? (5.0, 1.9) ?? (3.9, 1.15) ??.
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Figure 3.14: The U -D2-phase diagram of the Mott transition for the transition of the
Hubbard model towards the FK model for D1 = 2 on the Bethe lattice at
inverse temperature (a) β = 50, and (b) β = 100.
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Figure 3.15: The width ot the coexistence region Uc1 − Uc2 of the Mott transition as a
function of the half-bandwidth of the freezing spin D2 for the transition of
the Hubbard model towards the FK model for D1 = 2 on the Bethe lattice
at inverse temperature ?? β = 50, and ?? β = 100.

malized differently, the phase transition, i.e. the limits of the coexistence region, are the
same (at least up until D2 = 0.4 for D1 = 2).13 The interpretation is consistent with the
change observed in the imaginary part of the self-energy in Matsubara frequencies.14

In Fig. ?? the ratio of the quasiparticle residues of the two spins is shown for different
half-bandwidth of the freezing spin D2. The data points towards a constant ratio for each
ratio of the half-bandwidths, Z1

Z2
∝ D2

D1
suggesting D1Z1 = D2Z2 = const.. A possible

explanation can be reasoned as follows: Considering a system with spin 1 and 2, with
the kinetic energy

E1 =
p2

1

2m
and E2 =

p2
2

2m
. (3.5)

The kinetic energy of a spin is generally proportional to its bandwidth, Ei ∝ Di. Here
the assumption is made that in a wide range15 around the Mott transition the system
aims for a spin-independent effective kinetic energy,

E∗ =
p2

1

2m∗1
=

p2
2

2m∗2
, (3.6)

as reasoned in Footnote ??. By recalling Eq.(??),

p2
1

2m︸︷︷︸
∝D1

Z1 =
p2

2

2m︸︷︷︸
∝D2

Z2 (3.7)

13The statement is unexpected in the sense that in the FK model the frozen spin is never in the metallic
phase. Hence one could expect the transition of the freezing spin to wander of to U = 0 and D2 = 0
at some point.

14Reminder: While the itinerant spin gets renormalized more heavily the freezing spin maintains its
Z-factor right next to the critical interaction strength Uc1(D2) and Uc2(D2). These critical values
of divergence are spin-independent.

15It is clear that for U = 0 : Z1 = Z2 = 1. Thus it would be interesting to have a closer look at this
assumption by investigating the ratio Z1/Z2 for small values of U , analog to the analysis in Fig. ??
in the range of the Mott transition.
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is obtained and hence
D1

D2

∝ Z2

Z1

. (3.8)

In Fig. ?? the difference of the quasiparticle residue of the two spins is shown as
a function of the interaction strength, Z1 − Z2(U), for different half-bandwidth of the
freezing spin D2. The function can be described by16

Z1 − Z2(U ;D2) = a(D2) (U + b(D2))2 + c(D2), (3.9)

where a(D2), b(D2) and c(D2) are fitting parameters.17 The coexistence region ends
when the function gets zero, i.e. Z1 − Z2(Uc2) = 0, since the quasi particle residue—
which is actually not defined in the insulating phase—can be thought of as Z → 0 in
the Brinkman-Rice picture of the Mott transition.18

The shrinking coexistence region in the U -D2-phase diagram in Fig. ?? does not fully
characterize the transition of the Mott transition of the Hubbard model to the FK model.
Suppose the coexistence region gets smaller as a function of D2 for all temperatures and
vanishes only at D2 = 0. This behavior would connect the critical temperature Tc of the
Mott transition in the Hubbard model to a point on a temperature-independent straight
line—i.e. the Mott-like transition in the FK model—in Fig. ??. From the point of view
of the FK model the value Tc of the Hubbard model is arbitrary so that—motivated
by Renormalization Group—two guesses arise: Either the critical temperature decreases
as some function of freezing one spin vanishing at D2 = 0 or the critical temperature
increases as a function of reducing D2 going to infinity at D2 = 0.

In order to investigate these hypothesis a cut at constant bandwidth with D2 = 1.6 is
evaluated as shown in Fig. ??. The shift in the interaction strength as well as narrowing
is observed—c.f. values at β = 100 and β = 25. However the resolution is too poor in
order to make predictions about the critical temperature. It is partly due to the effect
of critical slowing-down in quantum Monte Carlo methods near the critical point.

A comparison of the hysteresis of the double occupancy at different temperatures
with D2 = 1.6 to the standard Hubbard model—as shown in Fig. ??—points towards Tc
being a trivial function of D2, Tc(D2) = const. The hysteresis are merely shifted while
the slopes do not significantly change. Although the change may just be too small for
observation.

Therefore the significance in the change of the hysteresis in the double occupancy
is considered when varying the half-bandwidth of the freezing spin D2 at constant
temperatures, β = 100 and β = 50, in Fig. ??. Even though the step-size of D2 is
constant, ∆D2 = 0.4, the change is increasing.19 It supports the assumption that at
some critical half-bandwidth of the freezing spin Dc2(T ) the coexistence region vanishes,

16I also plotted the the data over U2 and found a straight line. The point of this plot is that there may
be a (phenomenological) possibility to make precise predictions about where to find the MIT and
coexistence region for arbitrary D2.

17These parameters should be determined by a fitting procedure. It seems like there is some sort of
exponential or 1/U envelope function involved.

18Possibly the coexistence region is entered when the parabola and the envelop function are touching.
19 It seems to be quadratic in relation to the increasing relative change.
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Figure 3.18: The difference of the quasi particle residues of the two spins as a function of
the interaction strength U for the temperature dependent Mott transition
on the Bethe lattice computed at half-filling in the transition of the Hubbard
model (blue) towards the FK model at β = 100 and β = 50, with D1 = 2
and (olive) D2 = 1.6, (yellow) D2 = 1.2, (orange) D2 = 0.8, (red)
D2 = 0.4.
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Figure 3.21: The double occupancy 〈n↑n↓〉 as a function of the interaction strength U for
the temperature dependent Mott transition on the Bethe lattice computed
at half-filling in the transition of the Hubbard model (blue) towards the FK
model at (a) β = 100, (b) β = 50, with D1 = 2 and (blue) D2 = 2,
(olive) D2 = 1.6, (yellow) D2 = 1.2, (orange) D2 = 0.8, (red) D2 = 0.4.

Uc1 − Uc2(Dc2(T )) ≡ 0.20 Dc2(T ) could still equal zero for all temperatures that feature
a coexistence region in the Hubbard model, though. The only hint that Dc2(T ) in-
creases for lower temperatures, or rather Tc(D2) goes to zero for the FK model, is given
in Fig. ??. The linear regression of the width of the coexistence region Uc1 − Uc2(D2)
at β = 100 is equal zero for finite Dc2(β = 100) and smaller than Dc2(β = 50),
0 < Dc2(β = 100) < Dc2(β = 50).21

The spectral function A(ω) is shifted in its behavior respectively to the Mott transi-
tion, see Fig. ??. The Hubbard bands remain centered at values of frequency half of the
interaction strength, ω = U/2 as known from the standard Hubbard model. Interest-
ingly, the low-frequency spectral weight seems to be less significantly shifted compared
to the high frequency weight. It results in the impression that the Hubbard bands con-
sist of two independently moving peaks: The main peak and a smaller low-frequency
peak.

The low-frequency peak has been referred to as MaxEnt resonance peak as it has
already been seen in the standard Hubbard model. However no physical interpretation
is known. Fig. ?? shows insulating spectral functions of the same relative distance to
the Mott transition in the U -D2-phase diagram highlighted by gray circles in Fig. ??
(a). The spectra feature fixed lower frequency peaks, while the main peaks drift apart

20Tc does not seem to go to ∞ otherwise the change in β = 50 would likely be slower than in β = 100.
Although, here, the speed of change relies merely on impression.

21 This result is obtained by assuming linear behavior. Linearity seems to be appropriate, however the
physical understanding of why the sudden asymmetry and a change of kinetic energy would result
in a linear behavior is not given.
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Figure 3.22: The spectral function A(ω) for different values of interaction strength U
in the insulating phase near the Mott transition on the Bethe lattice in
transition of the Hubbard model to the FK model computed at half-filling
at β = 50 with D1 = 2 for (a) the itinerant spin and (b) the freezing spin
with (D2, U): ?? (5.2,2.0), ?? (4.5,1.4), ?? (3.5,0.8), and ?? (2.5,0.2) by
the code described in Section ??.

as dictated by U/2. Although the pseudo gap separating the two peaks is likely to be
overestimated by MaxEnt as one can see from the results in Ref. ?, the spectra are
evidence of a hidden energy scale within the system. It is similar to the fact that the
quasi particle residue of the freezing spin D2 right before entering the coexistence region
is equal for different half-bandwidth. The movement of the main peak might be coupled
to the effective kinetic energy of the system while the low-frequency peak is coupled to
the behavior of a spin-dependent value such as its kinetic energy. Analogous to the case
where both spins must be heavier than a certain critical effective mass, in the end maybe
only one spin determines the behavior of the low-frequency peak. The burning question
is which parameter is constant for the chosen D2 and U values in the insulating phase.
The quasi particle residue is not defined and from Fig. ?? it does not seem to be the
double occupancy either.
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In the scope of this thesis the metamorphosis of the Hubbard model to the FK model is
analyzed by means of the Mott transition in a fermionic system on the Bethe lattice in
infinite dimensions. Therefore code is implemented that allows a spin-independent choice
of the half-bandwidth of the Bethe DOS. It is accompanied by a new way of suppressing
Néel order by exploiting symmetries of the hybridization between the impurity and the
bath states.

When the half-bandwidth of one spin is reduced, while the half-bandwidth of th other
spin stays constant, we observe some basic changes:

• The Mott transition is shifted linearly to occur at lower interaction strength.

• The width of the coexistence region—defined by the difference of the critical in-
teraction strength—is getting smaller.

• The height of the coexistence region—referring to the critical temperature—is
probably reduced.

• The double occupancy of a site gets less likely.

• The itinerant spin gets renormalized more heavily as compared to the freezing
spin.

• In the spectral function of the insulating phase the Hubbard bands split up in 2
independently moving peaks. The main peak is centered at ±U/2, while the side
peak remains at constant position for equal distance to the Mott transition.

The change in behavior is driven by two concepts. The total kinetic energy E1 + E2

of the electrons and the mismatch or respectively the ratio of the kinetic energy of the
spins E1/E2. A possible explanation for the observations can be given with the following
physical processes and assumptions:

• The system renormalizes both spins so that they exhibit the same effective kinetic
energy.

• The freezing spin undergoes stronger localization effects as the itinerant spin.

• The system has less total kinetic energy.

• Some critical values must be passed by both spins while some need only one.
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• The Kondo effect is most likely to occur for spins with velocity of the same order
of magnitude.

Thereby some arguments can be made:
The freezing electrons are moving slower as they have less kinetic energy compared to

the itinerant spins. In order to obtain the same effective kinetic energy the freezing spin
has a lighter effective mass compared to the itinerant spin. Or equivalently the itinerant
spin gets renormalized more heavily.

The linear decrease of the total kinetic energy is narrowing the Hubbard bands lin-
early. It causes the Mott transition to be shifted towards smaller interaction strength
almost linearly. The shift is slightly slower closer to the Hubbard model, i.e. for smaller
mismatch in the kinetic energy, due to another effect: The Hubbard bands are addition-
ally narrowed by the main peak and the low-frequency peak merging. Trying to make
an educated guess, the position of the side peak is due to the kinetic energy of one spin.1

The underlying process may depend on the localization of the freezing spin.
The Mott transition is driven by the quasiparticle residue of the freezing spin. Or

equivalently, only when both spins are heavier than some spin-dependent critical effective
mass the system becomes insulating, and hence vice versa when one spin is lighter than
some other critical effective mass the system is metallic. It makes more sense of why
the critical interaction strengths decreases linearly as a function of the half-bandwidth
of the freezing spin, but additionally of the shrinking coexistence region. Following the
argument of the system aiming for equal effective kinetic energy: In the limit of the
FK model the itinerant spin is infinitely faster than the frozen one causing a infinitely
stronger renormalization of the itinerant spin decreasing the correlation temperature.
The Mott-like transition in the FK model describes physics infinitely high above the
Mott transition in the Hubbard model. It also allows the statement that the quasiparticle
concept holds just as much as it does for the Hubbard model at high temperatures where
the life-time is infinitely short.

The tendency of the freezing spin towards localization is observed by the decrease of
the double occupancy for decreasing values of the half-bandwidth of the freezing spin at
constant interaction strength. It might be caused by the itinerant spin being faster to
react on a site being occupied while the freezing spin is slower in changing the site. It
results in the electrons to less likely occupy the same site.

The Kondo temperature may behave in a way that the heavier itinerant spin deter-
mines the likelihood of the Kondo effect. So the stronger renormalized spin determines
the Kondo temperature that in turn determines the width of the quasi particle peak. It
causes the coexistence region to shrink for a greater mismatch in the kinetic energy. On
the other hand it may be that the Kondo effect is just more likely for spins that have
the same magnitude of velocity and hence the coexistence region vanishes. However
the shrinking should then be slower for higher temperatures, i.e. for systems with more
smearing in the energy scales. Also it would imply that they have to sit together for a
long time on the same site to do the spin flip. But at the Mott transition close to the

1Probably due to the kinetic energy of the freezing spin as it also determines the position of the Mott
transition.
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FK model the double occupancy of the insulating state is higher than the one close to
the Hubbard model of the metallic state.

Although we gained a greater understanding of how the metamorphosis takes place
there are plenty of questions that remain unanswered are:

• Why is the coexistence really region shrinking?

• What causes the low-frequency peaks?

• Can we make predictions about the coexistence region by a better understanding
of the spin-dependent quasiparticle residue as a function of the half-bandwidth
and the interaction strength?

• And lastly what about two particle quantities?
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A code

A.1 bethe-phasediagram-14-04-15.py

# bethe -phasediagram -14 -04 -15.py

# Marie -Therese Philipp

# Calculates the local Green ’s function in imaginary time

# and the self -energy in Matsubara frequencies

# of the Bethe lattice in the FK model

# for different values of interaction strength.

# The data is ploted and stored in txt files.

# Parameters.in

#######################################################

#[General]

#DOS = Bethe

#half -bandwidth = 1

D=2 + 0.j

#mu =

beta = 50.0

#NAt = 1

DMFTsteps = 20

FileNamePrefix = "FK -bethe"

#readold = 0

#[QMC]

#Eigenbasis = 1

#NCorr = 10

#Nmeas = 1e6

#Nwarmups = 1e6

Ntau = 1000

Niw = 200

#truncation = 2

#######################################################

U_min = 1.5 # minimal interaction energy if fixed electron is

present

U_step= 0.25 #

Usteps= 5 # how many times U_step is added

p = 0.5 # occupation probability

#######################################################
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import numpy as np

import matplotlib.pyplot as pl

from matplotlib2tikz import save as tikz_save

def Green_local(z, fiw , U=0., p=0.5, mu=0):

return p / ( z-fiw -U+mu ) + (1-p) / ( z-fiw+mu )

def Green_bare(z, fiw , mu=0):

x = (1j*w-fiw [0]+mu).imag

return 1./ (1j*x)

def dyson_siw( G, G0 ):

return 1./G0 - 1./G

def Green_local_analytically(z, d, siw , mu=0 ):

zeta = (1j*w-siw [0]+mu).imag

return 2*(1j*zeta)/d**2*( 1 - np.sqrt( 1 - d**2/(1j*zeta)**2 ) )

def hybridization(z, gloc , siw , mu=0):

x = (1j*w-siw [0]+mu).imag

return (1j*x) - 1./ gloc

def FT(z, Aiw , tau , beta):

return 1./ beta*np.sum(np.exp(-z[0,:,np.newaxis ]*tau[np.newaxis

,:])*Aiw[0,:,np.newaxis ]+np.exp(z[0,:,np.newaxis ]*tau[np.

newaxis ,:])*np.conjugate(Aiw[0,:,np.newaxis ]), axis =0)

#######################################################

w = np.fromfunction(lambda i, j: np.pi*(2*j+1)/beta + 0.j, (1,Niw) )

tau = np.linspace(0, beta , Ntau)

U_list_gloc =[]

U_list_giw =[]

U_list_siw =[]

U_list_glocold =[]

U_list_fiw =[]

U_list_gtau =[]

U_loop_cnt =0

U = U_min

mu = U_min /2

while U_loop_cnt <Usteps +1:

siw = np.zeros( (1,np.size(w)) )

first_gloc= Green_local_analytically( (1j*w), D, siw , mu )

fiw = hybridization( (1j*w), first_gloc , siw , mu)

list_gloc =[ first_gloc]
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list_giw =[]

list_siw =[]

list_glocold =[]

list_fiw =[fiw]

list_gtau =[ FT(1j*w,first_gloc ,tau ,beta) ]

loop_cnt =0

while loop_cnt <DMFTsteps:

glocold = Green_local( (1j*w), fiw , U, p, mu )

giw = Green_bare( (1j*w), fiw , mu)

siw = dyson_siw( glocold , giw )

gloc= Green_local_analytically( (1j*w), D, siw , mu )

gtau= FT(1j*w,gloc -1/(1j*w),tau ,beta)- 0.5

fiw = hybridization (1j*w, gloc , siw , mu)

list_gloc.append(gloc)

list_siw.append(siw)

list_giw.append(giw)

list_glocold.append(glocold)

list_fiw.append(fiw)

list_gtau.append(gtau)

del glocold

del giw

del siw

del gloc

del gtau

loop_cnt +=1

del loop_cnt

U_list_gloc.append(list_gloc[DMFTsteps -1][0])

U_list_siw.append(list_siw[DMFTsteps -1][0])

U_list_giw.append(list_giw[DMFTsteps -1][0])

U_list_glocold.append(list_glocold[DMFTsteps -1][0])

U_list_fiw.append(list_fiw[DMFTsteps -1][0])

U_list_gtau.append(list_gtau[DMFTsteps -1])

del list_gloc

del list_siw

del list_giw

del list_glocold

del list_fiw

del list_gtau

U_loop_cnt +=1

U += U_step

del mu

mu = U/2
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#########################################################

print "\nDMFTsteps = " +str(DMFTsteps)

print "U = [" +str(U_min) +";"+ str(U_min+U_step*Usteps)+"]"

print "1/T = "+str(beta.real)

print "half filling\n"

for i in range(0, Usteps +1):

filename = FileNamePrefix + "_gtau_U=" + str(U_min+i*U_step)

tau_gtau = np.array( (tau.real ,U_list_gtau[i].real) )

tau_gtau = np.reshape( tau_gtau , (2*np.size(tau)), order=’F’)

tau_gtau = np.reshape( tau_gtau , (np.size(tau) ,2))

np.savetxt( filename , tau_gtau)

for i in range(0, Usteps +1):

filename = FileNamePrefix + "_self -energy_U=" + str(U_min+i*

U_step)

w_siw = np.array( (w[0].real ,U_list_siw[i].imag) )

w_siw = np.reshape( w_siw , (2*np.size(w[0])), order=’F’)

w_siw = np.reshape( w_siw , (np.size(w[0]) ,2))

np.savetxt( filename , w_siw)

#pl.figure (1)

#for i in range(0, Usteps +1):

# pl.plot( w[0] , U_list_gloc[i].imag , label ="U= " +str(U_min+ i*

U_step) )

#pl.xlabel ("$i\omega_n$ ")

#pl.ylabel (" $Gloc_(i\omega)$")

#pl.legend ()

#pl.title( "Local Green ’s function ")

pl.figure (2)

for i in range(0, Usteps +1):

pl.plot( w[0] , U_list_siw[i].imag , label="U= " +str(U_min+ i*

U_step) )

pl.xlabel("$i\omega_n$")

pl.ylabel("$\Sigma_(i\omega)$")

pl.legend ()

pl.title( "self energy")

#pl.figure (3)

#for i in range(0, Usteps +1):

# pl.plot( w[0] , U_list_giw[i].imag , label ="U= " +str(U_min+ i*

U_step) )

#pl.xlabel ("$i\omega_n$ ")

#pl.ylabel ("$G0_(i\omega)$")

#pl.legend ()

#pl.title( "Bare Green ’s function ")

#pl.figure (4)

#for i in range(0, Usteps +1):
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# pl.plot( w[0] , U_list_fiw[i].imag , label ="U= " +str(U_min+ i*

U_step) )

#pl.xlabel ("$i\omega_n$ ")

#pl.ylabel ("$\Delta_(i\omega)$")

#pl.legend ()

#pl.title( "Hybridization ")

pl.figure (5)

for i in range(0, Usteps +1):

pl.plot( tau , U_list_gtau[i].real , label="U= " +str(U_min+ i*

U_step) )

pl.xlabel("tau")

pl.ylabel("G_(tau)")

pl.legend ()

pl.title( "G_(tau)")

#tikz_save( ’siw.tikz’ )

pl.show()

########################################################

A.2 w2dynamics class FKBetheLattice

class FKBetheLattice(BetheLattice):

""" This class implements a bethe lattice with self -consistency in

matsubaras , with spin resolved

band -widths. Input: e.g. half -bandwidth= 1, 2 ; Nd = 1. Thus , in

the limit the Falikov Kimball

model can be reproduced. """

def __init__(self , cfg ,comm=None):

BWDefinedLattice.__init__(self , cfg ,comm)

self.use_analytic = False

def sfw2gfw(self):

for ineq in self.ineq_atoms:

if self.magnetism == ’antiferro ’:

sfw_slice = slice(None , None , -1)

else:

sfw_slice = slice(None)

zeta = (1j*self.w[np.newaxis ,np.newaxis ,:] + self.mu -

ineq.hmean [...,np.newaxis] - ineq.sfw[..., sfw_slice ])

#zeta = 1j*zeta.imag

dspin2 = np.reshape( ineq.d, (ineq.nd ,2), order=’C’ )

[:,:,np.newaxis ]**2

ineq.gfw = 2*zeta/dspin2 * (1 - np.sqrt(1 - dspin2/zeta

**2))

def giw2siw(self , ineq , giw , gsigmaiw=None):

BWDefinedLattice.giw2siw(self , ineq , giw , gsigmaiw)

if self.use_analytic:

# The analytic formula requires storage of giw
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ineq.giw = giw

if self.magnetism == ’para’:

# Similar to the self -energy , when using the analytic

version of the

# Bethe self -consistency and wants to force paramagnetic

solutions ,

# one has to do this.

ineq.giw [...] = ineq.giw.mean(axis =1)[:,np.newaxis ,:]

ineq.siw = 0.5* ineq.cfg["Udd"] + 1j*ineq.siw.imag

def gfw2fiw(self):

""" Since we know how to analytically go from an impurity

greens function to a

hyb function we only do the calculation of the greens

function if we do not have a

g_imp yet.

"""

for ineq in self.ineq_atoms:

if self.use_analytic:

try:

if self.magnetism == ’antiferro ’:

giw_slice = slice(None)

else:

giw_slice = slice(None , None , -1) # inverse

because "hole"

dspin = np.reshape( ineq.d, (ineq.nd ,2), order=’C

’ )

ineq.fiw [...]=(0.25* dspin[:,:,np.newaxis ]**2*

ineq.giw[..., giw_slice ])

print >> sys.stderr , " Using analytic formula for

self -consistency"

return

except Exception ,e:

print >> sys.stderr , " Failed to use analytic

formula:", e

print >> sys.stderr , " Using lattice Green ’s function for

self -consistency"

Lattice.gfw2fiw(self)

def set_fmom(self):

for ineq in self.ineq_atoms:

ineq.fmom=-np.reshape( ineq.d, (ineq.nd ,2), order=’C’ )

**2/4.

#TODO: def set_fmom(self , ineq):

def set_crystalfield(self):

for ineq in self.ineq_atoms:

if ineq.cfg["crystalfield"]:
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ineq.hkmean [:ineq.nd ,:]=np.asarray(ineq.cfg["

crystalfield"])[:ineq.nd ,np.newaxis]

def set_hkmean(self):

pass

def init_matrices(self):

Lattice.init_matrices(self)

for ineq in self.ineq_atoms:

ineq.d = np.array([ float(x) for x in self.cfg["General"][

"half -bandwidth"]])

dspin = np.reshape( ineq.d, (ineq.nd ,2), order=’C’ )

def fiw2ftau(self):

""" Transforms the hybridization function from Matsubaras to

tau using a model """

for ineq in self.ineq_atoms:

dfiw = ineq.fiw[:,:,:] - ineq.fmom[:ineq.nd ,:,np.newaxis

]/( self.w[np.newaxis ,np.newaxis ,:]*1j)

ineq.ftau=(tf.transform(tf.mat2tau(self.beta , ’fermi’,

self.w.size , self.cfg["QMC"]["Nftau"]), dfiw)

- ineq.fmom[:ineq.nd ,:,np.newaxis ]/2.)

# dirty hack

ineq.ftau=np.where(ineq.ftau < 0, -ineq.ftau , ineq.ftau).

real

# symmetries ftau

ineq.ftau= 0.5*( ineq.ftau+ineq.ftau [... ,:: -1])

A.3 eval.py

def zfact(iw ,siw ,iw_val =0.):

""" Find gamma and alpha of self energy siw defined on axis iw;

iw ... real valued numpy array containing grid on pos

frequency axis

siw ... complex valued numpy array containing self -energy

"""

closest = 0.5* len(iw)

alpha = ((siw.imag[closest +1]-siw.imag[closest ])/(iw[closest +1]-

iw[closest ]))

gamma = siw.imag[closest]- alpha*iw[closest]

return (gamma ,alpha)
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